منابع مشابه
a new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولA Method for Comparing Self-organizing Maps: Case Studies of Banking and Linguistic Data
The method of self-organizing maps (SOM) is a method of exploratory data analysis used for clustering and projecting multi-dimensional data into a lower-dimensional space to reveal hidden structure of the data. The algorithm used retains local similarity and neighborhood relations between the data items. In some cases we have to compare the structure of data items visualized on two or more self...
متن کاملSelf-Organizing Data Structures
We survey results on self-organizing data structures for the search problem and concentrate on two very popular structures: the un-sorted linear list, and the binary search tree. For the problem of maintaining unsorted lists, also known as the list update problem, we present results on the competitiveness achieved by deterministic and random-ized on-line algorithms. For binary search trees, we ...
متن کاملCartogram Data Projection for Self-Organizing Maps
Self-Organizing Maps (SOMs) are often visualized by applying Ultsch’s Unified Distance Matrix (U-Matrix) and labeling the cells of the 2-D grid with training data observations. Although powerful and the de facto standard visualization for SOMs, this does not provide for two key pieces of information when considering real world data mining applications: (a) While the U-Matrix indicates the locat...
متن کاملProbabilistic self-organizing maps for qualitative data
We present a self-organizing map model to study qualitative data (also called categorical data). It is based on a probabilistic framework which does not assume any prespecified distribution of the input data. Stochastic approximation theory is used to develop a learning rule that builds an approximation of a discrete distribution on each unit. This way, the internal structure of the input datas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Environmental Toxicology and Chemistry
سال: 1982
ISSN: 0730-7268,1552-8618
DOI: 10.1897/1552-8618(1982)1[259:odfes]2.0.co;2